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Abstract. Topological index is an important numerical magnitude that can reflect the whole structure of a graph.
Degree-based indices are mathematical descriptors worked in chemical graph theory to compute the connectivity
and underlying descriptions of molecules. These indices, such as the Wiener index, Randić index, and Zagreb
indices, are obtained from the quantities of vertices in molecular graphs. The Wiener index correspond to the
calculation of gaps between all pairs of nodes in a graph, presenting information about molecular dimension
and separating. Zagreb indices, including the first and second Zagreb indices, summarize the measure allocation
and node connectivity within a molecular graph. Degree-based indices portray a critical position in molecular
modeling, QSAR investigations, and medication layout, requiring perceptions into molecular regional anatomy
and forecasting various physicochemical assets. In this article, we compute topological descriptors for complete
p-ary trees. Interesting comparison of these indices are is also shown in tabular and graphical format. Moreover,
expressions for multiple Zagreb indices and polynomials for these important classes are found.
Keywords: p−ary tree topological indices, multiple Zagreb indices and Zagreb polynomials

1. INTRODUCTION

Chemical graph theory works as a convincing context for understanding the structure,
properties, and activities of molecules. By depicting chemical structures as graphs and
applying graph theory based simplifications, researchers obtain valuable intuitions into
chemical connectivity, molecular descriptors, aromaticity, isomerism, and equilibrium.
The interdisciplinary environment of chemical graph theory forwards alliances between
mathematicians, chemists, and computer scientists, steering advance and discovery in
fields extending from drug discovery to materials science. Being a computational formu-
lae and methodologies continue to advance, molecular graph theory will continue to help
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out in molecular research, making scientists to discover the broad boundaries of chemicals
theory and address complex tasks in chemistry and also its applications in other fields.

Providing worthy comprehensions into physicochemical and structural possessions,
topological numbers are numerical resulting notions developed from the chemical graphs
of a molecular combination. These numbers play an important task in QSPAR studies
which are called as Quantitative Structure-Activity Relationship studies [1], drug theory
and in molecular developing. In recent past years, many topological numbers have been
improved to portray different aspects of chemical topology. Such as cycles, symmetry and
branching as well. Introduced by Harold Wiener in 1947 [2], among all these numerics,
the Wiener index, see for details [3, 4].

After the Wiener index, the Randić number, developed by Milan Randić in 1975 [5],
and the it is defined by:

Rα = ∑
λiλ∈E(G)

(dλidλ j)
α . (1)

Where α is a real number. The Balaban index, introduced by Dimitrije Balaban in 1982
[6], determines the molecular difficulty and aromaticity based on the distances between
pairs of vertices. Furthermore, the Zagreb indices, defined by Ante Graovac and Ne-
nad Trinajstic in 1972, require information about the degree allocation and vertex con-
nectivity in a molecular graph. These topological indices serve as powerful equipment
for calculating physicochemical properties, biological behaviour, and molecular behavior,
thereby showing drug discovery attempts and accelerating rational drug design. Besides,
the change and claim of topological indices have underwrote to the progression of compu-
tational chemistry and cheminformatics, allowing researchers to analyze and understand
complex molecular structures with better efficiency and accuracy. Some topological in-
dices are given in Table 1.

Topological indices, initially settled for molecular diagrams, have found applications in
separate fields alternating from chemistry to computer science. Although utmost explore
on topological indices has persistent on molecular diagrams, there is also attention in ap-
plying these indices to tree configurations [7]. Trees, as a identifiable type of graph with
classified group, share some connections with molecular diagrams, granting certain topo-
logical indices to be tailored and employed to tree formations. Topological indices overture
valuable equipment for studying classified organization within trees, requiring quantitative
procedures of structural appearance such as branching patterns, levels of ladder, and over-
all connectivity [5, 8]. Furthermore, these indices enable resemblance and organization
of tree assemblies, assisting tasks like gathering similar trees and finding common opera-
tional topics [9]. Besides, they aid in investigating the advance and growth of trees over
time, suggesting awareness into evolutionary developments and departure patterns.

In networking, topological indices boost the program of tree-based communication net-
works by studying connectivity and good organization [10]. Likewise, in machine learn-
ing, these indices evaluate the underlying things of decision trees, grassing outcomes about



Characterization of complete p-ary tree with degree-based topological descriptors 3

model collection and performing assessment. Although modifications are obligatory for
direct relevance to trees, topological indices provide valuable comprehensions into the as-
sociation, development, and functionality of tree-based arrangements through several areas
[11].

TABLE 1. Some Topological indices (TIs)

Sr.
No.

Name of TIs AbbreviationFormula

1 First Zagreb index 1Z(G) ∑
λiλ j∈E(G)

(
dλi +dλ j

)
[12]

2 general sum-connectivity index χα(G) ∑
λiλ j∈E(G)

(dλi +dλ j)
α ,

α ∈ R+ [13–15]

3 General Randić index Rα(G) ∑
λiλ j∈E(G)

(
dλi ×dλ j

)α

,

α ∈ R+

4 Inverse general Randić index RRα(G) ∑
λiλ j∈E(G)

(
dλi ×dλ j

)−α

,

α ∈ R+

5 atom-bond connectivity index ABC ∑
λiλ j∈E(G)

√
dλi

+dλ j
−2

dλi
×dλ j

[16]

6 geometric-arithmetic index GA ∑
λiλ j∈E(G)

2
√

dλi
×dλ j

dλi
+dλ j

[17]

7 fourth member of the class of ABC ABC4 ∑
λiλ j∈E(G)

√
Sλi

+Sv−2
Sλi
×Sv

[18]

8 fifth version of (GA) GA5 ∑
λiλ j∈E(G)

2
√

Sλi
×Sv

Sλi
+Sv

[? ]

9 first multiple Zagreb index PM1(G), ∏
λiλ j∈E(G)

(dλi +dλ j) [20]

10 second multiple Zagreb index PM2(G) ∏
λiλ j∈E(G)

(dλi ×dλ j) [20]

11 first Zagreb polynomial M1(G,x) ∑
λiλ j∈E(G)

x
(dλi

+dλ j
)

[20]

12 second Zagreb polynomial M2(G,x) ∑
λiλ j∈E(G)

x
(dλi
×dλ j

)
[20]

Recently, Koam et al. determined the algebraic properties for structures, Magnesium
Iodide [21], Fuchsine Acid Dye [22], Backbone DNA Networks [23] and Boron Clusters
Sheets [24, 25]. Two-dimensional coronene fractal structures are studies by Khabyah et al.
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[26] and Hakami et al. [27]. Ahmad et al. [28] discussed the reverse degree based indices
of Fullerene cages networks. Further research studied the topological indices for different
graphs like, anti-cancer treatment [29], bioconjugate networks [30], random cyclooctane
chains [31], benzenoid systems[32, 33] and Carbon Nanotubes [34]. For further results,
see [35–39].

2. RESULTS AND DISCUSSION

Trees, a elementary information creation in computer science and mathematics, find
distinct applications across different topics. Trees are ordered arranges consisting of nodes
linked by edges, with each node having zero or more child nodes. This flexible data con-
struct is used in frequent fields, including computer science, networking, inheritance, and
artificial information. Binary Search Trees (BSTs) enable rapidly probing, insertion, and
deletion procedures, making them valuable in records and file techniques. Huffman trees,
a alternative of binary trees, are devoted in Huffman coding for lossless information firm-
ness. This performance is applied in file firmness systems like ZIP and JPEG, enhancing
storage and conduction competence. Trees show a fundamental role in networking con-
ventions and routing algorithms. In short, trees are flexible and influential data structures
with extensive-extending applications in computer science, networking, genetics, artificial
intelligence, game theory, and organizational management. Their hierarchical features and
able operations make them essential tools for coordinating, analyzing, and operating data
in miscellaneous areas. For further detail see [40].

Due to symmetrical collections of nodes at each height in♦−ary complete trees, enough
algebraic possessions can be formulated and their algorithms can be designed and used in
different applications[41]. In this article some of those properties are used to formulate
some new properties and their proofs are given. In ♦−ary trees accomulated nodes at
every particular single level are combine up to ♦level . So q−height ♦−ary tree contains
the amount of nodes V is determined by implementing the assertion ♦

ℵ+1−1
♦−1 and the total

edges becomes ♦
ℵ+1−♦
♦−1 . For understanding the graph of 3−ary complete tree of 3 height

is depicted in Figure 1. Let edλi
,dλ j

denote the partition of edges with degree of end nodes.
The node partition is shown in Table 4.

TABLE 2. The degree-based node partition of complete ♦−ary Tree

Degree of vertex Number of vertices
1 ♦ℵ

♦ 1
♦+1 ♦ℵ−♦

♦−1

Total ♦ℵ+1−1
♦−1
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FIGURE 1. A complete 3−ary tree of height 4.

TABLE 3. The degree-based edge partition of complete ♦−ary Tree.

(dλi ,dλ j), where λiλ j ∈ E(G) Number of edges
(1,♦+1) ♦ℵ

(♦,♦+1) ♦
(♦+1,♦+1) ♦ℵ−♦2

♦−1

Total ♦ℵ+1−♦
♦−1

Theorem 2.1. Let C♦,ℵ be a complete ♦−ary trees of height ℵ. For ♦≥ 2,ℵ≥ 2, then

(1) Mα(C♦,ℵ) =♦ℵ +♦α +(♦
ℵ−♦
♦−1 )(♦+1)α

(2) Rα(C♦,ℵ) = (♦+1)α(♦ℵ +♦α+1)+(♦
ℵ−♦2

♦−1 )(♦+1)2α

(3) χα(C♦,ℵ) =♦ℵ(♦+2)α +♦(2♦+1)α +(♦
ℵ−♦2

♦−1 )(2♦+2)α ,
where α is a real number.

Proof. Using the values of Table 3 in the formula of general Randić index that is defined
above as:

Rα(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

(dλidλ j)
α

This implies that

Rα(C♦,ℵ) =e1,♦+1 (1× (♦+1))α + e♦,♦+1 (♦× (♦+1))α

+e♦+1,♦+1 ((♦+1)× (♦+1))α

=(♦ℵ)(♦+1)α +(♦)(♦(♦+1))α +(
♦ℵ−♦2

♦−1
)(♦+1)2α

=(♦+1)α(♦ℵ +♦α+1)+(
♦ℵ−♦2

♦−1
)(♦+1)2α ,

and the formula of general sum-connectivity index is

χα(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

(dλi +dλ j)
α
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This implies that
χα(C♦,ℵ)= e1,♦+1 (1+(♦+1))α +e♦,♦+1 (♦+(♦+1))α +e♦+1,♦+1 ((♦+1)+(♦+

1))α =♦ℵ(♦+2)α +♦(2♦+1)α +(♦
ℵ−♦2

♦−1 )(2♦+2)α . Which completes the proof. �

Theorem 2.2. For♦≥ 2,ℵ≥ 2, the atom-bound connectivity index ABC of C♦,ℵ is given
by

ABC(C♦,ℵ) =♦ℵ

√
♦
♦+1 +♦

√
2♦−1
♦2+♦ +

√
2♦(♦ℵ−♦2)

(♦2−1)
.

Proof. Using the values of Table 3 in the formula of the atom-bond connectivity index that
is defined above as:

ABC(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

√
dλi

+dλ j
−2

dλi
×dλ j

This implies that
ABC(C♦,ℵ) = e1,♦+1

√
1+♦+1−2
1×(♦+1) + e♦,♦+1

√
♦+♦+1−2
♦×(♦+1) + e♦+1,♦+1

√
♦+1+♦+1−2
(♦+1)×(♦+1) .

By using the Table 3, after simplification we get

ABC(C♦,ℵ) =♦ℵ

√
♦
♦+1 +♦

√
2♦−1
♦2+♦ +

√
2♦(♦ℵ−♦2)
(♦2−1) .

Which completes the proof. �

Theorem 2.3. For ♦≥ 2,ℵ≥ 2, the geometric-arithmetic index GA of C♦,ℵ is given by

GA(C♦,ℵ) = 2♦ℵ

√
♦+1
♦+2

+2♦
√
♦(♦+1)
2♦+1

+
♦ℵ−♦2

♦−1
.

Proof. Using the values of Table 3 in the formula of the geometric-arithmetic index that is
defined above as:

GA(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

2
√

dλi ×dλ j

dλi +dλ j

This implies that

GA(C♦,ℵ) = e1,♦+1
2
√

1×(♦+1)
1+♦+1 + e♦,♦+1

2
√
♦×(♦+1)
♦+♦+1 + e♦+1,♦+1

2
√

(♦+1)×(♦+1)
♦+1+♦+1 .

By using the Table 3, we get

GA(C♦,ℵ) =♦ℵ 2
√
♦+1
♦+2 +♦ 2

√
♦(♦+1)

2♦+1 +(♦
ℵ−♦2

♦−1 ) 2(♦+1)
2(♦+1) .

After simplification we obtain

GA(C♦,ℵ) = 2♦ℵ
√
♦+1
♦+2 +2♦

√
♦(♦+1)
2♦+1 + ♦

ℵ−♦2

♦−1 . Which completes the proof. �

Now, we calculate ABC4 and GA5 for complete♦−ary tree. A complete♦−ary tree for
height ℵ = 1 is a star tree with S♦ whose degree partitions are already known. For height
h = 2, two types of edges on degree based sum of neighbors vertices of each edge can be
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classified. The first edge partition E♦+1,2♦ contains ♦ℵ edges λiλ j, where Sλi = ♦+ 1,
Sλ j = 2♦. The second edge partition E2♦,♦(♦+1) contains ♦ℵ−1 edges λiλ j, where Sλi =

2♦, Sλ j =♦(♦+1). For height h = 3, three types of edges on degree based sum of neigh-
bors vertices of each edge can be classified. The first edge partition E♦+1,2♦+1 contains
♦ℵ edges λiλ j, where Sλi =♦+1, Sλ j = 2♦+1. The second edge partition E2♦+1,♦(♦+2)

contains ♦ℵ−1 edges λiλ j, where Sλi = 2♦+ 1, Sλ j = m(m+ 2) and third edge partition
E♦(♦+2),♦(♦+1) contains ♦ edges λiλ j, where Sλi =♦(♦+2), Sλ j =♦(♦+1). Whereas
for height ℵ > 3 these edge partitions are generalized in five types and after calculating
these partitions they are used to calculate ABC4 and GA5 indices. Table 5 gives such types
of edges of the complete ♦−ary trees. The edge set E(C♦,ℵ) divided into four edge par-
titions based on degree of end vertices. The first edge partition E♦+1,2♦+1(C♦,ℵ) contains
♦ℵ edges λiλ j, where Sλi = ♦+ 1, Sλ j = 2♦+ 1 and e♦+1,2♦+1 = |E♦+1,2♦+1(C♦,ℵ)|.
The second edge partition E2♦+1,(♦+1)2(C♦,ℵ) contains ♦ℵ−1 edges λiλ j, where Sλi =

2♦+1, Sλ j = (♦+1)2 and e2♦+1,(♦+1)2 = |E2♦+1,(♦+1)2(C♦,ℵ)|. The third edge partition
E♦(♦+1),♦(♦+2)(C♦,ℵ) contains♦ edges λiλ j, where Sλi =♦(♦+1), Sλ j =♦(♦+2) and
e♦(♦+1),♦(♦+2)= |E♦(♦+1),♦(♦+2)(C♦,ℵ)|. The fourth edge partition E♦(♦+2),(♦+1)2(C♦,ℵ)
contains ♦2 edges λiλ j, where Sλi = ♦(♦+ 2), Sλ j = (♦+ 1)2 and e♦(♦+2),(♦+1)2 =

|E♦(♦+2),(♦+1)2(C♦,ℵ)|. The fifth edge partition E(♦+1)2,(♦+1)2(C♦,ℵ) contains ♦
ℵ−1−♦3

♦−1
edges λiλ j, where Sλi = Sλ j = (♦+1)2 and e(♦+1)2,(♦+1)2 = |E(♦+1)2,(♦+1)2(C♦,ℵ)|.

TABLE 4. The vertex partition of graph C♦,ℵ based on degree sum of
neighbor vertices of end vertices of each edge.

degree sum of neighbor vertices Number of vertices
of end vertices of each edge
♦+1 ♦ℵ

2♦+1 ♦ℵ−1

♦(♦+1) 1
♦(♦+2) ♦
(♦+1)2 ♦ℵ−1−♦2

♦−1

Total ♦ℵ+1−1
♦−1

Theorem 2.4. For ♦≥ 2,ℵ > 3, the 4th atom-bound connectivity index ABC4 of C♦,ℵ is
given by

ABC4(C♦,ℵ)= (♦ℵ)
√

3♦
2♦2+3♦+1 +

♦ℵ−1

♦+1

√
♦2+4♦
2♦+1 +

√
2♦2+3♦−2
♦2+3♦+2 + ♦2

♦+1

√
2♦2+4♦−1
♦2+2♦ +

♦ℵ−1−♦3

(♦−1)(♦+1)2

√
2♦2 +4m.
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TABLE 5. Based on the sum-degree of neighbor vertices, the edge par-
tition of C♦,ℵ graph.

(Sλi ,Sλ j), where λiλ j ∈ E(C♦,ℵ) Number of edges
(♦+1,2♦+1) ♦ℵ

(2♦+1,(♦+1)2) ♦ℵ−1

(♦(♦+1),♦(♦+2)) ♦
(♦(♦+2),(♦+1)2) ♦2

((♦+1)2,(♦+1)2) ♦ℵ−1−♦3

♦−1

Total ♦ℵ+1−♦
♦−1

Proof. It is easy to see that edges has five types e♦+1,2♦+1, e2♦+1,(♦+1)2 , e♦(♦+1),♦(♦+2),
e♦(♦+2),(♦+1)2 and e(♦+1)2,(♦+1)2 that are shown in Table 5. The ABC4 is defined as:

ABC4(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

√
Sλi

+Sλ j
−2

Sλi
×Sλ j

This implies that

ABC4(C♦,ℵ) =e♦+1,2♦+1

√
♦+1+2♦+1−2
(♦+1)×(2♦+1) + e2♦+1,(♦+1)2

√
(2♦+1)+(♦+1)2−2
(2♦+1)×(♦+1)2

+e♦(♦+1),♦(♦+2)

√
♦(♦+1)+♦(♦+2)−2
♦(♦+1)×♦(♦+2) + e♦(♦+2),(♦+1)2

√
♦(♦+2)+(♦+1)2−2
♦(♦+2)×(♦+1)2

+e(♦+1)2,(♦+1)2

√
(♦+1)2+(♦+1)2−2
(♦+1)2×(♦+1)2 .

By using the Table 5, we get

ABC4(C♦,ℵ) =(♦ℵ)
√

3♦
2♦2+3♦+1 +(♦ℵ−1)

1
♦+1

√
♦2+4♦
2♦+1 +(♦) 1

♦

√
2♦2+3♦−2
♦2+3♦+2

+(♦2)
1
♦+1

√
2♦2+4♦−1
♦2+2♦ +(

♦ℵ−1−♦3

♦−1
)

1
(♦+1)2

√
2♦2 +4♦

=(♦ℵ)
√

3♦
2♦2+3♦+1 +

♦ℵ−1

♦+1

√
♦2+4♦
2♦+1 +

√
2♦2+3♦−2
♦2+3♦+2

+
♦2

♦+1

√
2♦2+4♦−1
♦2+2♦ +

♦ℵ−1−♦3

(♦−1)(♦+1)2

√
2♦2 +4♦.

That completes the proof. �
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Theorem 2.5. For ♦≥ 2,ℵ > 3, the 5th geometric-arithmetic index GA5 of C♦,ℵ is given

by GA5(C♦,ℵ) = 2♦ℵ

√
2♦2+3♦+1

3♦+2 +2♦ℵ−1
√

2♦3+5♦2+4♦+1
♦2+4♦+2 +2♦

√
♦2+3♦+2
2♦+3

+2♦2(♦+1)
√
♦2+2♦

2♦2+4♦+1 +(♦
ℵ−1−♦3

♦−1 ).

Proof. The fifth geometric-arithmetic index GA5 is defined as:

GA5(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

2
√

Sλi ×Sλ j

Sλi +Sλ j

This implies that

GA5(C♦,ℵ) =e♦+1,2♦+1
2
√
(♦+1)× (2♦+1)
♦+1+2♦+1

+ e2♦+1,(♦+1)2
2
√

(2♦+1)× (♦+1)2

2♦+1+(♦+1)2

+e♦(♦+1),♦(♦+2)
2
√
♦(♦+1)×♦(♦+2)
♦(♦+1)+♦(♦+2) + e♦(♦+2),(♦+1)2

2
√
♦(♦+2)×(♦+1)2

♦(♦+2)+(♦+1)2

+e(♦+1)2,(♦+1)2
2
√

(♦+1)2×(♦+1)2

(♦+1)2+(♦+1)2 . By using the Table 5, we get

GA5(C♦,ℵ) = (♦ℵ)
2
√

2♦2+3♦+1
3♦+2 +(♦ℵ−1)

2
√

2♦3+5♦2+4♦+1
♦2+4♦+2 +(♦) 2

√
♦2(♦2+3♦+2)
♦(2♦+3) +

(♦2)
2
√
♦(♦+2)×(♦+1)2

2♦2+4♦+1 +(♦
ℵ−1−♦3

♦−1 ) 2(♦+1)2

2(♦+1)2 .

After easy simplification we obtain

GA5(C♦,ℵ) = 2♦ℵ

√
2♦2+3♦+1

3♦+2 +2♦ℵ−1
√

2♦3+5♦2+4♦+1
♦2+4♦+2 +2♦

√
♦2+3♦+2
2♦+3

+2♦2(♦+1)
√
♦2+2♦

2♦2+4♦+1 +(♦
ℵ−1−♦3

♦−1 ).

�

Theorem 2.6. For ♦≥ 2,ℵ≥ 2, then

(1) HM(C♦,ℵ) =♦ℵ(♦+2)2 +♦(2♦+1)2 +(♦
ℵ−♦2

♦−1 )(2♦+2)2

(2) PM1(C♦,ℵ) = (♦+2)♦
ℵ × (2♦+1)♦× (2♦+2)

♦ℵ−♦2
♦−1

(3) PM2(C♦,ℵ) =♦♦ (♦+1)
(♦+1)(♦ℵ−♦)

♦−1

(4) M1(C♦,ℵ,x) =♦ℵ x♦+2 +♦x2♦+1 +(♦
ℵ−♦2

♦−1 )x2♦+2

(5) M2(C♦,ℵ,x) =♦ℵ x♦+1 +♦x♦(♦+1)+(♦
ℵ−♦2

♦−1 )x(♦+1)2

Proof. Since,

HM(C♦,ℵ) = ∑
λiλ j∈E(C♦,ℵ)

(
dλi +dλ j

)2
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HM(C♦,ℵ) = ∑
λiλ j∈E1(C♦,ℵ)

[
dλi +dλ j

]2
+ ∑

λiλ j∈E2(C♦,ℵ)

[
dλi +dλ j

]2
+ ∑

λiλ j∈E3(C♦,ℵ)

[
dλi +dλ j

]2
HM(C♦,ℵ) = e1,♦+1 (1 + (♦+ 1))2 + e♦,♦+1 (♦+ (♦+ 1))2 + e♦+1,♦+1 ((♦+ 1) +

(♦+1))2

After putting the values of edge partitions, we get
HM(C♦,ℵ) =♦ℵ(♦+2)2 +♦(2♦+1)2 +(♦

ℵ−♦2

♦−1 )(2♦+2)2. Since,

PM1(C♦,ℵ) = ∏
λiλ j∈E(C♦,ℵ)

(dλi +dλ j)

PM1(C♦,ℵ) = ∏
λiλ j∈E1(C♦,ℵ)

(dλi +dλ j)× ∏
λiλ j∈E2(C♦,ℵ)

(dλi +dλ j)× ∏
λiλ j∈E3(C♦,ℵ)

(dλi +dλ j)

PM1(C♦,ℵ) = (♦+2)|E1(C♦,ℵ)|× (2♦+1)|E2(C♦,ℵ)|× (2♦+2)|E3(C♦,ℵ)|

PM1(C♦,ℵ) = (♦+2)♦
ℵ × (2♦+1)♦× (2♦+2)

♦ℵ−♦2
♦−1 . Now, since

PM2(C♦,ℵ) = ∏
λiλ j∈E(C♦,ℵ)

(dλi ×dλ j)

PM2(C♦,ℵ) = ∏
λiλ j∈E1(C♦,ℵ)

(dλi ×dλ j)× ∏
λiλ j∈E2(C♦,ℵ)

(dλi ×dλ j)× ∏
λiλ j∈E3(C♦,ℵ)

(dλi ×dλ j)

PM2(C♦,ℵ) = (♦+1)|E1(C♦,ℵ)|× (♦(♦+1))|E2(C♦,ℵ)|× ((♦+1)2)|E3(C♦,ℵ)|

= (♦+1)♦
ℵ × (♦(♦+1))♦× ((♦+1)2)

♦ℵ−♦2
♦−1 . After simplification we get

PM2(C♦,ℵ) =♦♦ (♦+1)
(♦+1)(♦ℵ−♦)

♦−1 . As,

M1(C♦,ℵ,x) = ∑
λiλ j∈E(C♦,ℵ)

x
(dλi

+dλ j
)

M1(C♦,ℵ,x) = ∑
λiλ j∈E1(C♦,ℵ)

x
(dλi

+dλ j
)
+ ∑

λiλ j∈E2(C♦,ℵ)
x
(dλi

+dλ j
)
+ ∑

λiλ j∈E3(C♦,ℵ)
x
(dλi

+dλ j
)

= ∑
λiλ j∈E1(C♦,ℵ)

x♦+2 + ∑
λiλ j∈E2(C♦,ℵ)

x2♦+1 + ∑
λiλ j∈E3(C♦,ℵ)

x2♦+2

= |E1(C♦,ℵ)|x♦+2 + |E2(C♦,ℵ)|x2♦+1 + |E3(C♦,ℵ)|x2♦+2

=♦ℵ x♦+2 +♦x2♦+1 +(♦
ℵ−♦2

♦−1 )x2♦+2, As

M2(C♦,ℵ,x) = ∑
λiλ j∈E(C♦,ℵ)

x
(dλi
×dλ j

)

M2(C♦,ℵ,x) = ∑
λiλ j∈E1(C♦,ℵ)

x
(dλi
×dλ j

)
+ ∑

λiλ j∈E2(C♦,ℵ)
x
(dλi
×dλ j

)
+ ∑

λiλ j∈E3(C♦,ℵ)
x
(dλi
×dλ j

)
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= ∑
λiλ j∈E1(C♦,ℵ)

x♦+1 + ∑
λiλ j∈E2(C♦,ℵ)

x♦(♦+1) + ∑
λiλ j∈E3(C♦,ℵ)

x(♦+1)2
. By putting the val-

ues, we obtain M2(C♦,ℵ,x) =♦ℵ x♦+1 +♦x♦(♦+1)+(♦
ℵ−♦2

♦−1 )x(♦+1)2
.

�

3. CONCLUSION

This paper deal with the degree-based indices for complete ♦-ary tree. Its numeri-
cal and graphical representation are shown in Table 6 and Figure 2. The degree-based
indices characterize a elementary appearance of chemical graph theory, supporting ap-
preciated intuitions into the connectivity and structural assets of molecules. By counting
the degree of splitting, equilibrium, and density within molecular graphs, these indices
provide as crucial tools in molecular modeling, quantitative structure-activity relationship
(QSAR) studies, and drug layout. Examples such as the Wiener index, Randić index,
and Zagreb indices extend resourceful means of indicating molecular analysis situs and
expecting various physicochemical belongings. As computational modes continue to on-
slaught, degree-based indices will persist connected to understanding molecular structures
and managing molecular research in disciplines such as medications, materials science,
and computational natural science.

FIGURE 2. Shows comparison between ABC,GA,ABC4,GA5 against
the value of ♦.
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TABLE 6. Shows comparison between ABC,GA,ABC4,GA5 against the
value of ♦.

Inputs Theorem 2.2 Theorem 2.3 Theorem 2.4 Theorem 2.5
♦ h ABC(C♦,ℵ) GA(C♦,ℵ) ABC4(C♦,ℵ) GA5(C♦,ℵ)
2 9 758.13 953.36 569.06 1901.47
3 9 23071.82 25586.37 15122.84 72123.22
4 9 283898.42 282770.58 166139.46 1019635.89
5 8 408059.01 371035.53 217098.08 1625036.63
6 8 1721260.63 1446883.54 844117.63 7449384.51
7 8 5841850.24 4584203.32 2668898.95 27118711.31
8 7 2110365.96 1557883.19 905660.31 10410608.50
9 7 4791177.66 3347883.81 1944253.83 24941052.59
10 7 9986356.44 6638817.97 3852701.87 54556549.66
11 6 1765384.83 1121288.42 650412.10 10076726.77
12 6 2971135.93 1809468.91 1049293.92 17654313.38
13 6 4797729.18 2810268.40 1629403.07 29585090.78
14 5 534181.39 301742.92 174944.33 3409503.95
15 5 753829.56 411592.93 238641.91 4968804.84
16 5 1040529.20 550280.62 319085.30 7068796.72
17 4 82858.55 42518.95 24659.26 579135.17
18 4 104125.89 51931.97 30124.02 747610.36
19 4 129252.48 62745.02 36404.21 951971.59
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