ISSN 2709-4170 (Print) Transactions in Mathematical and Computational Sciences Vol. 1(2)(2021) pp. 1–11

ON TOTAL EDGE IRREGULAR STRENGTH OF TRIANGLE RELATED GRAPHS

FATMA SALAMA¹, MUHAMMAD KAMRAN SIDDIQUI^{2,*} ¹ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt ²Department of Mathematics, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan

Abstract. An edge irregular total *h* -labeling of a simple, undirected and connected graph G(V,E) is a labeling defined by $H: V \cup E \rightarrow \{1,2,3,\ldots,h\}$ so that for any two distinct edges pq, rs their weights are different; i.e. $W_H(pq) \neq W_H(rs)$ where $W_H(pq) = H(p) + H(q) + H(pq)$. A total edge irregular strength [TEIS] of a graph *G*, denoted by tes(G), is a labelling with the minimum *h*. In this paper, we have calculated the exact value of TEIS of triangle related graphs namely half gear graph, double fan graph and triangular snake graph. **Keywords:** Total edge irregularity strength, Half gear graph, Double fan graph, Triangular snake graph.

cy words. Total edge integularity strength, man gear graph, Double fan graph, mangular snake

1. INTRODUCTION

A function which assign some set of elements of a graph *G* with a set of positive or non-negative integers is called labeling. Authors in [1] have defined an edge irregular total *h*-labeling for a simple, connected and undirected graph G(V,E) as a labelling $H: V \cup E \rightarrow \{1,2,3,\ldots,h\}$ such that a graph *G* have distinct weights, for any two distinct edges *l* and l^* i.e. $w_H(l) \neq w_H(l^*)$. If a graph *G* admits an edge irregular total *h*-labeling and *h* is the minimum, then tes(G) is a of a graph TEIS *G*. Moreover, for any graph *G*, tes(G) is given by [1]:

$$tes(G) \ge \max\{\lceil \frac{|E(G)|+2}{3}\rceil, \lceil \frac{\Delta(G)+1}{2}\rceil\}.$$
(1)

Conjecture 1: For any graph G, except K_5 , with maximum degree $\Delta(G)$ the following relation is satisfied:

$$tes(G) = \max\{\lceil \frac{|E(G)|+2}{3}\rceil, \lceil \frac{\Delta(G)+1}{2}\rceil\}.$$

The above conjecture has been made out for polar grid graph [2], for some Cartesian product graphs in [3], for a categorical product of two paths [4], for categorical product of two cycles in [5], for subdivision of star [6], for dense graphs [7], for generalized prism in [8], for large graphs in [9], for generalized web graphs and related graphs [10], for zigzag graphs [11], for hexagonal grid graphs in [12], for fan graph, wheel graph, triangular book graph, friendship graph [13], for centralized uniform theta graphs. For more details, see [14-27].

*Correspondence: kamransiddiqui75@gmail.com Received: 20.11.2020 Revised: 15.02.2021 Accepted: 0

Accepted: 01.03.2021 P

Published: 20.04.2021

In this paper, the exact value of TEIS for half gear graph, double fan graph and triangular snake graph are determined.

2. MAIN RESULTS

2.1. Total edge irregularity strength of half gear graph.

The half gear graph HG_n , is the graph obtained from the fan graph F_n by inserting a vertex between any two adjacent vertices in its path P_n [28].

Theorem 1. Let $m \ge 2$, HG_m be a half gear graph with 2m vertices and 3m - 2 edges. Then

$$tes(HG_m) = m$$

Proof: Since $|V(HG_m)| = 2m$, $|E(HG_m)| = 3m - 2$, then by replacement in (1) we have

$$tes(HG_m) \ge \lceil \frac{3m-2+2}{3} \rceil = m.$$

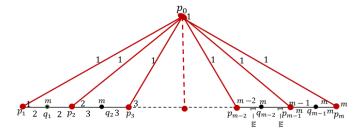


Figure (1) Half gear graph HG_m

Now, it's necessary to prove that there exists an edge irregular total h- labeling for HG_m , in Figure (1), with h = m. Let h = m and a total h- labeling $H: V \cup E \rightarrow \{1, 2, 3, ..., h\}$ defined as:

$$\begin{array}{rcl} H(p_0) & = & 1, \\ H(p_i) & = & i, & \text{for } 1 \leq i \leq m, \\ H(q_i) & = & h, & \text{for } 1 \leq i \leq m-1, \\ H(p_iq_i) & = & i+1, & \text{for } 1 \leq i \leq m-1, \\ H(q_ip_{i+1}) & = & i+1, & \text{for } 1 \leq i \leq m-1, \\ H(p_0p_i) & = & 1, & \text{for } 1 \leq i \leq m. \end{array}$$

On total edge irregular strength of triangle related graphs

It is obvious that the greatest label is h = n. Also, the weights of the edges of a gear graph G_m are given by:

$$\begin{array}{lll} W_{H}(p_{0}p_{i}) & = & i+2, \ \ {\rm for} \ 1 \leq i \leq m, \\ \\ W_{H}(p_{i}q_{i}) & = & 2i+h+1, \ \ {\rm for} \ 1 \leq i \leq m-1 \\ \\ W_{H}(q_{i}p_{i+1}) & = & 2i+h+2, \ \ {\rm for} \ 1 \leq i \leq m-1 \end{array}$$

Upon checking, it was found that the weights of any two different edges in HG_m are different. Hence, H is an edge irregular total h- labeling; h = m; for the half gear graph HG_m , i.e.

$$tes(HG_m) = m.$$

Example 2.1. For the half gear graphs HG_4 , HG_6 and HG_9 the TEISs of them are given by $tes(HG_4) = 4$, $tes(HG_6) = 6$, $tes(HG_9) = 9$. See Figures (2), (3) and (4).

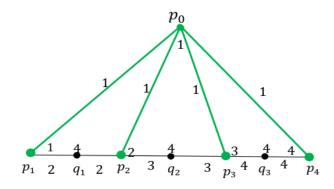
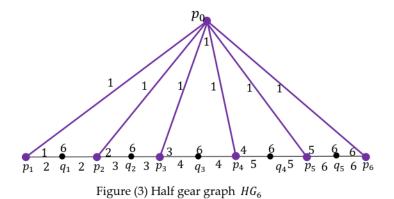


Figure (2) Half gear graph HG_4



3

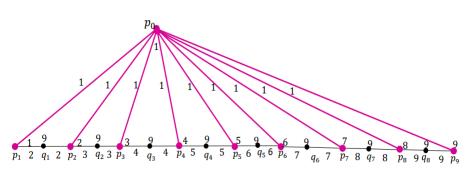


Figure (4) Half gear graph HG₉

2.2. Total edge irregularity strength of a double fan graph $F_{2,m} = \bar{K}_2 + P_m$.

Theorem 2.2. Let $F_{2,m} = \bar{K}_2 + P_m$ be a double fan graph with order m + 2 and size $3m - 1, m \ge 2$. Then

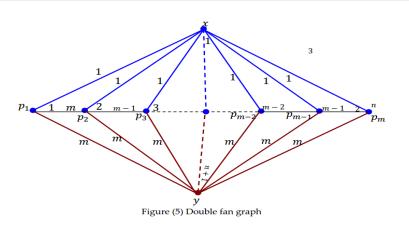
$$tes(F_{2,m}) = m + 1.$$

Proof. Since |V| = m + 2, |E| = 3m - 1, then form (1),

$$tes(F_{2,m}) \ge \lceil \frac{3m+1}{3} \rceil,$$

= $\lceil \frac{3m+3}{3} - \frac{2}{3} \rceil,$
= $\lceil m+1 - \frac{2}{3} \rceil,$
= $\lceil m+\frac{1}{3} \rceil = m+1.$

Thus, $tes(F_{2,m}) \ge m+1$.



Since we need to show that there exists an edge irregular total *t*-labeling with t = m + 1 for a fan graph $F_{2,m}$ shown in Figure (5). Let t = m + 1 and $T : V \cup E \rightarrow \{1, 2, 3, ..., t\}$ is a total *t* - labeling and can be defined as:

$$T(x) = 1,$$

$$T(y) = t,$$

$$T(p_i) = i, \text{ for } 1 \le i \le m,$$

$$T(xp_i) = 1, \text{ for } 1 \le i \le m,$$

$$T(yp_i) = t-1, \text{ for } 1 \le i \le m,$$

$$T(p_ip_{i+1}) = t-i, \text{ for } 1 \le i \le m-1.$$

Obviously, t = m + 1 is the greatest label. On the other hand, weights of edges in $F_{2,m}$ are given by:

$$\begin{array}{lll} W_T(xp_i) &=& 2+i, \mbox{ for } 1 \leq i \leq m, \\ W_T(yp_i) &=& 2t+i-1, \mbox{ for } 1 \leq i \leq m, \\ W_T(p_ip_{i+1}) &=& i+t+1, \mbox{ for } 1 \leq i \leq m-1. \end{array}$$

From the above equations it's clear that the weights of any two distinct edges are distinct. Hence T is an edge irregular total t - labeling, t = m + 1. This mean that

$$tes(F_{2,m}) = m+1.$$

5

Example 2. TEIS of $F_{2,5}$, $F_{2,6}$ and $F_{2,8}$ are $tes(F_{2,5}) = 6$, $tes(F_{2,6}) = 7$, $tes(F_{2,8}) = 9$, see Figures (6), (7) and (8).

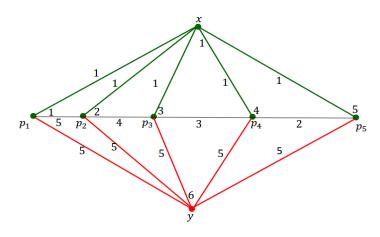


Figure (6) A double fan graph $F_{2,5}$

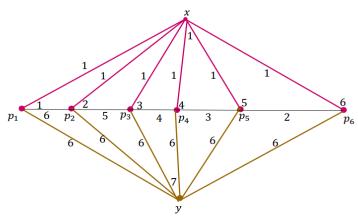


Figure (7) A double fan graph $F_{2,6}$

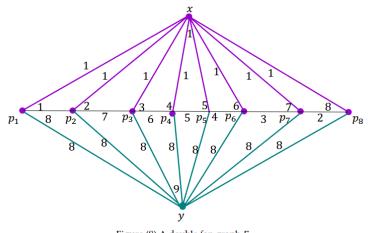


Figure (8) A double fan graph $F_{2,8}$

2.3. Total edge irregularity strength of triangular snake graph T_m . The triangular snake T_n is obtained from the path P_n by replacing each edge of the path by a Triangle C_3 [29].

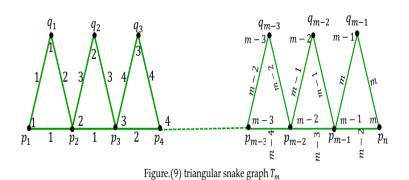
Theorem 2.3. For any triangular snake graph T_m with an order of 2m - 1 and a size of 3(m - 1), $m \ge 2$, then:

$$tes(T_m) = m.$$

Proof. Since $|V(T_m)| = 2m - 1$, $|E(T_m)| = 3(m - 1)$, then from (1),

$$tes(T_m) \ge \lceil \frac{3m-3+2}{3} \rceil$$
$$= \lceil \frac{3m-1}{3} \rceil$$
$$= \lceil m - \frac{1}{3} \rceil$$
$$= m.$$

Thus, $tes(T_m) \ge m$.



Now, we show that there exist an edge irregular total λ -labeling with $\lambda = m$. Let $\lambda = m$ and $Y : V \cup E \rightarrow \{1, 2, 3, ..., \lambda\}$ is a total λ -labeling defined by:

$$\begin{array}{rcl} Y(p_i) &=& i, \mbox{ for } 1 \leq i \leq m, \\ Y(q_i) &=& i, \mbox{ for } 1 \leq i \leq m-1, \\ Y(p_1p_2) &=& 1, \\ Y(p_1q_1) &=& 1, \\ Y(p_ip_{i+1}) &=& i-1, \mbox{ for } 2 \leq i \leq m-1, \\ Y(q_ip_{i+1}) &=& i+1, \mbox{ for } 1 \leq i \leq m-1, \\ Y(q_ip_i) &=& i+1, \mbox{ for } 2 \leq i \leq m-1. \end{array}$$

Obviously, the greatest value of the label is $\lambda = m$. The weights of the edges of T_m are:

$$\begin{array}{rcl} W_Y(p_1p_2) &=& 4, \\ W_Y(p_1q_1) &=& 3, \\ W_Y(p_ip_{i+1}) &=& 3i, \text{ for } 2 \leq i \leq m-1, \\ W_Y(q_ip_{i+1}) &=& 3i+2, \text{ for } 1 \leq i \leq m-1, \\ W_Y(q_ip_i) &=& 3i+1, \text{ for } 2 \leq i \leq m-1. \end{array}$$

Checking the weights of edges clarifies that they are different. Hence, Y is total irregularity strength for T_m , see figure (9), i.e.

$$tes(T_m) = m.$$

Example 2.4. TEIS of the triangular snake graphs T_6, T_8, T_9 are given $tes(T_6) = 6$, $tes(T_8) = 8$, $tes(T_9) = 9$. See Figures (10), (11) and (12).

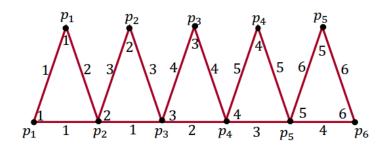


Figure (10) The triangular snake graph T_6

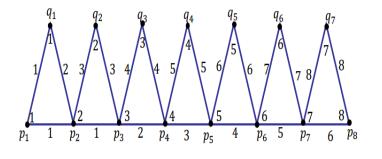


Figure (11) The triangular snake graph T_8

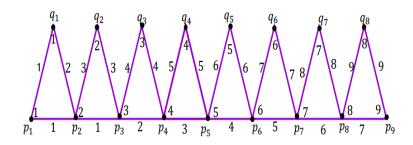


Figure (12) The triangular snake graph T_9

3. CONCLUSION

In this paper, we determined the exact value of TEIS for half gear graph HG_m , double fan graph $F_{2,m}$, and triangular snake graph T_m as shown in the following formulas:

$$tes(HG_m) = m,$$

$$tes(F_{2,m}) = m+1,$$

$$tes(T_m) = m.$$

COMPETING INTERESTS

The authors declare that they have no competing interests.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for their helpful, valuable comments and suggestions in the improvement of this manuscript.

AUTHOR'S CONTRIBUTIONS

All authors equally contributed to this work. All authors read and approved the final manuscript.

REFERENCES

- Baéa, M., Jendro, S., Miller, M., & Ryan, J. (2007). On irregular total labellings. *Discrete Mathematics*, 307(11), 1378-1388.
- [2] Salama, F. (2019). On the total irregularity strength of polar grid graph. *Journal of Taibah University for Science*, 13, 912-916.
- [3] Ramdani, R., & Salman, A.N.M. (2013). On the total irregularity strength of some Cartesian product graphs. AKCE International Journal of Graphs and Combinatorics, 10(2), 199-209.
- [4] Ahmad, A., & Baa, M. (2014). Total edge irregularity strength of a categorical product of two paths. Ars Combinatoria, 114, 203-212.
- [5] Ahmad, A., Baa, M., & Siddiqui, M. K. (2014). On edge irregular total labeling of categorical product of two cycles. *Theory of Computing Systems*, 54(1), 1-12.
- [6] Hinding, N., Suardi, N., & Basir, H. (2015). Total edge irregularity strength of subdivision of star. *Journal of Discrete Mathematics Sciences and Cryptography*, 18(6), 869-875.
- [7] Majerski, P., & Przybylo, J. (2014). On the irregularity strength of dense graphs. SIAM Journal of Discrete Mathematics, 28(1), 197-205.
- [8] Baa, M., & Siddiqui, M. K. (2014). Total edge irregularity strength of generalized prism. *Applied Mathematics and Computation*, 235, 168-173.
- [9] Pfender, F.(2012). Total edge irregularity strength of large graphs. Discrete Mathematics, 312, 229-237.
- [10] Indriati, D., Widodo, I.E. Wijayanti, Sugeng, K.A., & Baa, M. (2015). On Total Edge Irregularity Strength of Generalized Web Graphs and Related Graphs. *Mathematics in Computer Science*, 9, 161-167.
- [11] Ahmad, A., Siddiqui, M.K., & Afzal, D. (2012). On the total edge irregularity strength of zigzag graphs. *Australasian Journal of Combinatorics*, 54, 141-149.

- [12] Al-Mushayt, O., Ahmad, A., & Siddiqui, M.K. (2012). On the total edge irregularity strength of hexagonal grid graphs. *Australasian Journal of Combinatorics*, 53, 263-271.
- [13] Tilukay, M. I., Salman, A.N.M., & Persulessy, E. R. (2015). On the Total Irregularity Strength of Fan, Wheel, Triangular Book, and Friendship Graphs. *Proceedia Computer Science*, 74, 124-131.
- [14] Putra, R.W., & Susanti, Y. (2018). On total edge irregularity strength of centralized uniform theta Graphs. —emph AKCE International Journal of Graphs and Combinatorics, 15, 7-13.
- [15] Amar, D., & Togni, O. (1998). On irregular strenght of trees. Discrete Mathematics, 190, 15-38.
- [16] Ivanco, J., & Jendro, S. (2006). Total edge irregularity strength of trees. *Discussiones Mathematcae Graph Theory*, 26, 449-456.
- [17] Jendro, S., Miskuf, J., & Sotk, R. (2007). Total edge irregularity strength of complete and complete bipartite graphs. *Electron Notes Discrete Mathematics*, 28, 281-285.
- [18] Siddiqui, M.K. (2012). On edge irregularity strength of subdivision of star S_n. International Journal of Mathematics and Soft Computing, 2, 75-82.
- [19] Ahmad, A., Arshad, M., & Iarkov, G. (2015). Irregular labelings of helm and sun graphs. AKCE International Journal of Graphs and Combinatorics, 12, 161-168.
- [20] Rajasingh, I., & Arockiamary, S.T. (2015). Total edge irregularity strength of series parallel graphs. International Journal of Pure and Applied Mathematics, 99(1), 11-21.
- [21] Naeem, M., & Siddiqui, M.K. (2017). Total irregularity strength of disjoint union of isomorphic copies of Generalized Petersen graph. *Discrete Mathematics, Algorithms and Applications*, 9, 1750071.
- [22] Jeyanthi, P., & Sudha, A. (2015). Total Edge Irregularity Strength of Disjoint Union of Wheel Graphs. *Electron Notes in Discrete Mathematics*, 48, 175-182.
- [23] Ahmad, A., Siddiqui, M.K., Ibrahim, M., & Asif, M. (2016). On the total irregularity strength of Generalized Petersen Graph. *a total Mathematics Reports*, 68, 197-204.
- [24] Ahmad, A., Al-Mushayt, O. B. S., & Baa, M. (2014). On edge irregularity strength of graphs. Applied Mathematics and Computation, 243, 607-610.
- [25] Ahmad, A., & Baa, M. (2009). Edge irregular total labeling of certain family of graphs. AKCE International Journal of Graphs and Combinatorics, 6, 21-29.
- [26] Brandt, S., Mikuf, J., & Rautenbach, D. (2008). On a conjecture about edge irregular total labellings. *Journal of Graph Theory*, 57, 333-343.
- [27] Mikuf, J., & Jendro, S. (2007). On total edge irregularity strength of the grids. *Tatra Mt. Mathematics Publications*, **36**, 147-151.
- [28] Daoud, S.N. (2017). Edge odd labeling of some path and cycle related graphs. AKCE International Journal of Graphs and Combinatorics, 14, 178-203.
- [29] Thirusangu, K., Mary, V.C., & Suresh, D. (2018). Some Graph Labelings on The Inflation of Triangular Snake Graph. Special Issue NCCFQET May, 146-149.